

Using Gravitational Waves to see the Early Universe

Rishav Roshan

School of Physics and Astronomy, University of Southampton

Based on: 2401.04388, PRD 109 (2024) 2, 024057, Nucl.Phys.B 1002 (2024) 116528 and Phys.Rev.D 107 (2023) 9, 095002

Collaborators:

Stephen F. King, Qaisar Shafi, George Lazarides, Graham White, Masahito Yamazaki, Debasish Borah, Xin Wang, Suruj Jyoti Das, Basabendu Barman and Rinku Maji

Plan of the talk

1. A brief introduction to high-scale physics:

- a. Dark Matter
- b. Matter-Antimatter asymmetry
- c. Scale of Quantum Gravity
- d. Primordial Black Holes

2. Gravitational Wave Physics

- a. Theory b. Sources c. Detectors d. Recent Discoveries
- 3. GWs from Domain Walls and its applications
- 4. GWs from Cosmic Strings and its applications
- 5. GWs from PBH and its applications
- 6. Summary and Conclusion

The Early Universe

Dark Matter

Evidence of DM : Galaxy Rotation Curve

Detecting particle nature of DM:

What we know :

- □ Relic density
- □ Massive
- □ Stable object
- □ No or very weak interaction

What we don't know:

- □ Nature of DM
- □ Interaction
- □ Production mechanism

How massive? How to probe?

"No dessert until you finish your dark matter."

Matter-Antimatter asymmetry

Every particle has its counterpart, called an antiparticle. Antiparticle is identical to its particle counterpart in all respects except charge.

$$Y_B = \frac{n_B - n_{\bar{B}}}{s} = (8.70 - 8.73) \times 10^{-11}$$

Most explanations consider very high-energy scales, can we test such scales?

Scale of Quantum Gravity

Vafa, hep-th/0509212 Ooguri & Vafa, NPB 766, 21 (2007)

□ For decades **EFT has played a vital role** in Particle physics

□ It has **guided physicists** looking for the signatures of new physics

However, it has limitations: The situation becomes different once we include gravity and demand that the EFT in question is valid at all energies in suitable QG theory

Primordial Black Holes

Any observational effects of such PBHs?

Gravitational Waves:

Ripples in the fabric of spacetime

Gravitational Waves: Theory

Possible sources of GW in the early Universe

- GW propagates freely once generated
- Carry unique information about the processes that produced them

Possible Sources:

- 1. Inflation
- 2. Phase Transition
- 3. Topological Defects
- 4. Primordial Black Holes

These sources might also be the origin of some of the Cosmological Puzzles:

- 1. Dark Matter
- 2. Matter-Antimatter asymmetry
- 3. Primordial Black Holes

Can we use GW to TEST/PROBE these high-energy scales?

GW Detections

THE SPECTRUM OF GRAVITATIONAL WAVES

·e esa

Credit to ESA

Recent Discoveries

Discovery of GW by LIGO-VIRGO Col.

Source of GW: Merging of pair of BHs at z = 0.09

Recent results reported by PTA projects

FW YORK THURSDAY JUNE 29 202

The Cosmos Is Thrumming With Gravitational Waves, Astronomers Find

Several PTA projects have reported positive evidence of a stochastic gravitational wave background.

Source of SGWB: Merging of SMBH Binaries/Cosmological

GWs: Important Scientific Milestones

The Nobel Prize in Physics 2017

© Nobel Media. III. N. Elmehed Rainer Weiss Prize share: 1/2

© Nobel Media. III. N. Elmehed Barry C. Barish Prize share: 1/4

© Nobel Media. III. N. Elmehed Kip S. Thorne Prize share: 1/4

Some recent works on GW from Domain Walls

Citation Summary

Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded	ed by strings	#1
Bowen Fu (Shanghai Jiao Tong U.), Anish Ghoshal (Warsaw U.), Stephen F. King (Southampton U.), Moin 25, 2024)	ul Hossain Rahat (Valenc	ia U., IFIC) (Apr
e-Print: 2404.16931 [hep-ph]		
🔁 pdf 🖃 cite 😨 claim	C reference search	\bigcirc 0 citations
Stochastic gravitational wave background generated by domain wall networks		#2
e-Print: 2403.09816 [gr-qc]		
🔁 pdf 🖃 cite 😨 claim	c reference search	

The NANOGrav 15 yr Data Set: Search for Signals from New Physics		#1
NANOGrav Collaboration • Adeela Afzal (Munster U. and Quaid-i-Azam U.) et al. (Jun 28, 2023)		
Published in: Astrophys. J.Lett. 951 (2023) 1, L11 • e-Print: 2306.16219 [astro-ph.HE]		
🖹 pdf 🕜 links 🖉 DOI 🖃 cite 🗒 claim	C reference search	
A review of gravitational waves from cosmic domain walls		#3
Ken'ichi Saikawa (DESY) (Mar 7, 2017)		
Published in: Universe 3 (2017) 2, 40 • e-Print: 1703.02576 [hep-ph]		
🖹 pdf 🖉 DOI 🖃 cite 🗔 claim	C reference search	

On the e	On the estimation of gravitational wave spectrum from cosmic domain walls #6				
Takashi Hiramatsu (Kyoto U., Yukawa Inst., Kyoto), Masahiro Kawasaki (Tokyo U., ICRR and Tokyo U., IPMU), Ken'ichi Saikawa (Tokyo Inst. Tech.) (Sep 19, 2013)					
Published	in: JCAP 02	(2014) 031	• e-Print: 1309.5001 [astro-ph.CO]		
🖻 pdf	∂ DOI	🖃 cite	🗟 claim	d reference search	∋ 139 citations

Axion cosmology with long-lived domain walls			
Takashi Hiramatsu (Kyoto U., Yukawa Inst., Kyoto), Masahiro K Toyokazu Sekiguchi (Nagoya U.) (Jul, 2012)	awasaki (Tokyo U., IPMU and Tokyo U., ICRR), Ken'ichi Saikawa (Tokyo U., ICRR),		
▶ pdf ♥ DOI □ cite □ claim	লা হী reference search 🛛 🕀 175 citations		
Gravitational Waves from Collapsing Domain Walls	#13		
Takashi Hiramatsu (Tokyo U., ICRR), Masahiro Kawasaki (Tokyo Published in: JCAP 05 (2010) 032 • e-Print: 1002.1555 [astro-	U., ICRR and Tokyo U., IPMU), Ken'ichi Saikawa (Tokyo U., ICRR) (Feb, 2010) ·ph.CO]		
🖹 pdf 🕜 DOI 🖃 cite 📑 claim	□ [3] reference search		

Domain Wall Formation

$$V(\phi) = rac{\lambda}{4} (\phi^2 - v^2)^2$$

Spontaneous breaking of \mathbb{Z}_2

From Yann Gouttenoire's SHEP seminar

Domain Wall: Fact-Sheet

$$\phi(x) = v \tanh\left(\sqrt{\frac{\lambda}{2}}vx\right)$$

Surface Tension

(a)

$$\sigma = \int_{-\infty}^{\infty} dx \left[\frac{1}{2} \left(\frac{\partial \phi(x)}{dx} \right)^2 + V(\phi(x)) \right] = \sqrt{\frac{8\lambda}{9}} v^3$$

Energy Density

 $ho_{
m DW} \propto a_{
m (Dilutes \, much \, slower \, than \, radiation \, and \, matter)}^{-1}$

Scale factor

Possible Solutions

- **1. If formed before inflation, they can be inflated away**
- 2. Symmetry restoration at some temperature
- 3. Metastable Domain Walls

Gravitational Waves from Domain Walls

Applications: GW from DW

The renormalizable potential $(Z_2$ -conserving)

$$V = \mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^2 + H^{\dagger} H (\lambda_{hs1} S_1^2 + \lambda_{hs2} S_2^2) + \lambda_{s12} S_1^2 S_2^2 + \mu_2^2 S_2^2 + \frac{\lambda_2}{4} S_2^4 + \frac{\lambda_1}{4} (S_1^2 - v_1^2)^2$$

Dimension-five potential $(Z_2$ -breaking)

$$\begin{split} \Delta V &= \frac{1}{\Lambda_{\rm QG}} \sum_{i=1}^{2} (\alpha_{1i} S_{i}^{5} + \alpha_{2i} S_{i}^{3} H^{2} + \alpha_{3i} S_{i} H^{4}) + \frac{1}{\Lambda_{\rm QG}} \sum_{j=1}^{4} c_{j} S_{1}^{j} S_{2}^{5-j} \\ V_{\rm bias} &\simeq \frac{1}{\Lambda_{\rm QG}} \left(v_{1}^{5} + \frac{v_{1}^{3} v_{h}^{2}}{2} + \frac{v_{1} v_{h}^{4}}{4} \right) \end{split}$$

DM Decay:

 $\Delta V \supset S_2 H^4 / \Lambda_{\rm QG}$

Electroweak symmetry breaking

Indirect detection of dark matter

CMB power spectrum $\tau_{\rm DM}\gtrsim 10^{25}~{\rm s}$ 10²⁷ HEAO-1 INTEGRAL COMPTEL EGRET 10²⁶ FERMI 10²⁵ τ (s) 10^{24} 10²³ 10²² 10⁻³ 10-2 10⁻¹ 10⁰ 10¹ DM mass (GeV) Slatyer & Wu, PRD 95, 2, 023010 (2017)

GW from DW: Testing the scale of Quantum Gravity

Some recent works on GW from Cosmic Strings

Citation Summary

Type-I two-Higgs-doublet model and gravitational waves from domain walls bounded	d by strings	#1
Bowen Fu (Shanghai Jiao Tong U.), Anish Ghoshal (Warsaw U.), Stephen F. King (Southampton U.), Moine 25, 2024)	ul Hossain Rahat (Valencia	a U., IFIC) (Apr
e-Print: 2404.16931 [nep-pn]		
🖈 pdf 🖃 cite 🗐 claim	c reference search	\bigcirc 0 citations
Ultra-high frequency gravitational waves from cosmic strings with friction		#2
S. Mukovnikov, L. Sousa (Apr 19, 2024)		
e-Print: 2404.13213 [astro-ph.CO]		
🗈 pdf 🖃 cite 🛛 claim	a reference search	∋ 0 citations

The NANOGrav 15 yr Data Set: Search for Signals from New Physics		#1
Published in: Astrophys.J.Lett. 951 (2023) 1, L11 • e-Print: 2306.16219 [astro-ph.HE]		
[] pdf ∂ links ∂ DOI ⊡ cite 🔂 claim	C reference search	
The number of cosmic string loops Jose J. Blanco-Pillado (Tufts U., Inst. of Cosmology and Basque U., Bilbao and IKERBASQUE, Bi Banjamin Shlaar (Tufts U., Inst. of Cosmology) (Sen 25, 2013)	lbao), Ken D. Olum (Tufts U.	#8 ., Inst. of Cosmology),
Published in: <i>Phys.Rev.D</i> 89 (2014) 2, 023512 • e-Print: 1309.6637 [astro-ph.CO]		
Ď pdf ♂ DOI 🖃 cite 🔂 claim	a reference search	h → 266 citations
Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase In Sources Pierre Binetruy (APC, Paris), Alejandro Bohe (Paris, Inst. Astrophys.), Chiara Caprini (Saclay, SP 2012) Published in: JCAP 06 (2012) 027 · e-Print: 1201.0983 [gr-qc] Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (2012) 027 · e-Comparison (Saclay) Published in: JCAP 06 (Saclay) Published 07 (Saclay)	hT), Jean-Francois Dufaux (屁 reference searcl	APC, Paris) (Jan, h 🕣 294 citations
Gravitational wave bursts from cusps and kinks on cosmic strings Thibault Damour (IHES, Bures-sur-Yvette), Alexander Vilenkin (Tufts U.) (Apr, 2001) Published in: Phys.Rev.D 64 (2001) 064008 • e-Print: gr-qc/0104026 [gr-qc] Pdf	्ति reference search	#14 364 citations
Gravitational wave bursts from cosmic strings Thibault Damour (IHES, Bures-sur-Yvette), Alexander Vilenkin (Tufts U.) (Apr, 2000) Published in: <i>Phys.Rev.Lett.</i> 85 (2000) 3761-3764 • e-Print: gr-qc/0004075 [gr-qc]		#15

Cosmic String Formation

Cosmic Strings

CS is a 1-d defect originating from SSB of U(1) symmetry.

a. Breaking of global U(1) symmetry: Global stringb. Breaking of local U(1) symmetry: Local string

Cosmic Strings: Fact-Sheet

The evolution of CS network is much more complicated:

- a. Intercommutation of intersecting strings leads to the formation of loops of different sizes.
- b. Smaller loops decay by radiating GW.

(b) self-intersection

Scale factor

Gravitational Waves from Cosmic Strings

At a later time, the size of a loop's initial length $l_i = \alpha t_i$ can be expressed as: $l(t) \simeq \alpha t_i - \Gamma G \mu (t - t_i)$.

 $G\mu$: String Tension $\Gamma = 50$

Set of normal mode oscillation with frequency $f_k = 2k/l$

$$\Omega_{\rm GW}(t_0, f) = \sum_k \Omega_{\rm GW}^{(k)}(t_0, f) \qquad f \equiv f(t_0) = f_k a(t_0)/a(t)$$

GW energy density at present:

$$\Omega_{\rm GW}^{(k)}(f) = \frac{1}{\rho_c} \frac{2k}{f} \frac{\mathcal{F}_{\alpha} \Gamma^{(k)} G \mu^2}{\alpha(\alpha + \Gamma G \mu)} \int_{t_F}^{t_0} d\tilde{t} \frac{C_{\rm eff}(t_i^{(k)})}{t_i^{(k)^4}} \left[\frac{a(\tilde{t})}{a(t_0)}\right]^5 \left[\frac{a(t_i^{(k)})}{a(\tilde{t})}\right]^3 \Theta(t_i^{(k)} - t_F),$$

$$Typical feature:$$

$$\Omega_{\rm GW}^{(k=1), \rm plateau}(f) = \frac{128\pi G \mu}{9\zeta(\delta)} \frac{A_r}{\epsilon_r} \Omega_r \left[(1 + \epsilon_r)^{3/2} - 1\right]$$

$$\epsilon_r = \alpha / \Gamma G \mu \quad \Omega_r \simeq 9 \times 10^{-5} \quad A_r = 5.4$$

Phil.Trans.Roy.Soc.Lond.A 380 (2022) 20210060

Applications: GW from Cosmic Strings

Example I: JHEP 11 (2021) 175 (Ligong Bian, Xuewen Liu and Ke-Pan Xie)

The relevant symmetry:
$$SM \times \mathbb{Z}_2 \times U(1)_{B-L}$$
 Gauged Cosmic String GW

The relevant Lagrangian:

$$\mathcal{L}_{\rm B-L} = \sum_{i} \bar{\nu}_{R}^{i} i \not \!\!\! D \nu_{R}^{i} - \frac{1}{2} \sum_{i,j} \left(\lambda_{R}^{ij} \bar{\nu}_{R}^{i,c} \Phi \nu_{R}^{j} + \right) - \sum_{i,j} \left(\lambda_{D}^{ij} \bar{\ell}_{L}^{i} \tilde{H} \nu_{R}^{j} + \right) + D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - \lambda_{\phi} \left(|\Phi|^{2} - \frac{v_{\phi}^{2}}{2} \right)^{2} - \frac{1}{4} Z_{\mu\nu}^{\prime} Z^{\prime\mu\nu},$$

The relevant Lagrangian for DM:

GW from CS: As a probe to super-heavy DM

Applications: GW from Cosmic Strings

Example II: Nucl.Phys.B 1002 (2024) 116528

The relevant symmetry:

The relevant Lagrangian:

$$-\mathcal{L} \supset \sum_{\alpha,i} Y_{\alpha i} \overline{L}_{\alpha} \tilde{H} N_i + \frac{1}{2} \sum_{i,j=1,2} h_{ij} S \overline{N_i^c} N_j + \frac{1}{2} M_3 \overline{N_3^c} N_3 + \frac{m_{\rm DM}^2}{2} \phi^2.$$

Multiple Matter Dominated era resulting from:

- PBH dominated Universe
- Diluter (N₃) dominated universe

GW from CS: probing multiple MD eras

Some recent works on GW from PBH

Citation Summary

Non-Gaussianities in primordial black hole formation and induced gravitational waves		#2	
Shi Pi (Apr 9, 2024)			
e-Print: 2404.06151 [astro-ph.CO]			
🔁 pdf 🔚 cite 📑 claim	C reference search	① citations	
Primordial black holes and induced gravitational waves in non-singular matter bouncing cosmology			#6
Theodoros Papanikolaou, Shreya Banerjee, Yi-Fu Cai, Salvatore Capozziello, Emmanuel N. Saridakis (Apr 4, 2024)			
e-Print: 2404.03779 [gr-qc]			

The NANOGrav 15 yr Data Set: Search for Signals from New Physics NANOGrav Collaboration • Adeela Afzal (Munster U. and Quaid-i-Azam U.) et al. (Jun 28, 2023) Published in: <i>Astrophys.J.Lett.</i> 951 (2023) 1, L11 • e-Print: 2306.16219 [astro-ph.HE]		#1
🚡 pdf 🕜 links 🕜 DOI 🖃 cite 🐻 claim	🗟 reference search	
Scalar Induced Gravitational Waves Review		#
Guillem Domènech (INFN, Padua) (Sep 3, 2021) Published in: <i>Univers</i> e 7 (2021) 11, 398 • e-Print: 2109.01398 [gr-qc]		
B pdf	a referenc	e search $\ $
Primordial black holes—perspectives in gravitational wave astronomy		#3
Misao Sasaki, Teruaki Suyama, Takahiro Tanaka, Shuichiro Yokoyama (Jan 16, 2018) Published in: Class.Quant.Grav. 35 (2018) 6, 063001 • e-Print: 1801.05235 [astro-ph.CO]		
🖹 pdf 🕜 DOI 🖃 cite 📑 claim	a reference	search 🕣 744 citations

Gravitational Waves from Primordial Black Hole Mergers		#9	
Martti Raidal (NICPB, Tallinn), Ville Vaskonen (NICPB, Tallinn), Hardi Veermäe (NICPB, Tallinn) (Jul 5, 2017)			
Published in: JCAP 09 (2017) 037 • e-Print: 1707.01480 [astro-ph.CO]			
🖹 pdf 🔗 DOI 🖃 cite 🐻 claim	C reference search		

Gravitat	Gravitational wave background as a probe of the primordial black hole abundance #11				#11
Ryo Saito	iyo Saito (Tokyo U. and Tokyo U., RESCEU), Jun'ichi Yokoyama (Tokyo U., RESCEU and Tokyo U., IPMU) (Dec, 2008)				
Published	ublished in: Phys.Rev.Lett. 102 (2009) 161101, Phys.Rev.Lett. 107 (2011) 069901 (erratum) + e-Print: 0812.4339 [astro-ph]				
🖁 pdf	∂ DOI	i cite	🖫 claim	C reference search	∋ 359 citations

🔓 pdf 🛛 🔁 cite 📑 claim

Primordial Black Holes (PBH)

Collapse of large inhomogeneities PBH formation **Collapse of cosmic string loops Bubble collisions PBH mass at formation:** Black mass $M_{\rm BH}(T_{\rm in}) = \frac{4}{3} \pi \gamma \left(\frac{1}{\mathcal{H}(T_{\rm in})}\right)^3 \rho_{\rm rad}(T_{\rm in})$ $T_{\rm BH} = \frac{1}{8\pi G M_{\rm BH}} \approx 1.06 \left(\frac{10^{13} \text{ g}}{M_{\rm BH}}\right) \text{ GeV}$ $\beta \equiv \frac{\rho_{\rm BH} (T_{\rm in})}{\rho_{\rm rad} (T_{\rm in})}$ $\beta < \beta_{\rm crit} \equiv \gamma^{-1/2} \sqrt{\frac{\mathcal{G} g_{\star}(T_{\rm BH})}{10640 \pi}} \frac{M_{\rm pl}}{m_{\rm in}}$ Hawking evaporation: Energy BH dominate $\frac{dm_{\rm BH}(t)}{dt} = -\frac{\mathcal{G}\,g_{\star}\left(T_{\rm BH}\right)}{30720\,\pi}\,\frac{M_{\rm pl}^4}{m_{\rm in}(t)^2}$ **Bound on PBH mass:** $0.1\,\mathrm{g} \lesssim m_{\mathrm{in}} \lesssim 3.4 \times 10^8\,\mathrm{g}$

Scale factor

PBH: Fact-Sheet

$$T_{\rm in} = \left(\frac{45\,\gamma^2}{16\,\pi^3\,g_\star\,(T_{\rm in})}\right)^{1/4} \sqrt{\frac{M_{\rm pl}}{M_{\rm BH}(T_{\rm in})}} \,M_{\rm pl} \qquad T_{\rm BH} = \frac{1}{8\pi\,G\,M_{\rm BH}} \approx 1.06\,\left(\frac{10^{13}\,\mathrm{g}}{M_{\rm BH}}\right)\,\mathrm{GeV} \qquad T_{\rm evap} \equiv \left(\frac{45\,M_{\rm pl}^2}{16\,\pi^3\,g_\star\,(T_{\rm evap})\,\,\tau^2}\right)^{1/4}$$

Particle production from PBH

$$\mathcal{N}_{X} = \frac{g_{X,H}}{g_{\star,H}(T_{\rm BH})} \begin{cases} \frac{4\pi}{3} \left(\frac{m_{\rm in}}{M_{\rm pl}}\right)^{2} & \text{for } m_{X} < T_{\rm BH}^{\rm in} ,\\ \\ \frac{1}{48\pi} \left(\frac{M_{\rm pl}}{m_{X}}\right)^{2} & \text{for } m_{X} > T_{\rm BH}^{\rm in} . \end{cases},$$

Leptogenesis from PBH:

$$M_{1} \begin{cases} > \frac{4 g_{\star,H}(T_{\rm BH}^{\rm in})}{g_{X} a_{\rm sph}} \zeta \frac{Y_{B}^{0}}{Y_{B}^{\rm evap}} \frac{v^{2} M_{\rm pl}^{2}}{m_{\nu} m_{\rm in}^{2}} & \text{for } M_{1} < T_{\rm BH}^{\rm in}; \\ < \frac{g_{X} a_{\rm sph}}{256 \pi^{2} g_{\star,H}} \frac{1}{\zeta} \frac{Y_{B}^{\rm evap}}{Y_{B}^{0}} \frac{M_{\rm pl}^{2} m_{\nu}}{v^{2}} & \text{for } M_{1} > T_{\rm BH}^{\rm in}, \end{cases}$$

DM from PBH:

$$\Omega_{\rm DM} h^2 = \mathbb{C}(T_{\rm ev}) \begin{cases} \frac{1}{\pi^2} \sqrt{\frac{M_{\rm pl}}{m_{\rm in}}} m_{\rm DM} & \text{for } m_{\rm DM} < T_{\rm BH}^{\rm in} \\ \frac{1}{64 \, \pi^4} \left(\frac{M_{\rm pl}}{m_{\rm in}}\right)^{5/2} \frac{M_{\rm pl}^2}{m_{\rm DM}} & \text{for } m_{\rm DM} > T_{\rm BH}^{\rm in} \end{cases}$$

with

$$\mathbb{C}(T_{\rm ev}) = \frac{s_0}{\rho_c} \frac{1}{\zeta} \frac{g_{X,H}}{g_{\star,H}} \frac{5}{g_{\star s}(T_{\rm ev})} \left(\frac{\pi^3 g_{\star}(T_{\rm ev})}{5}\right)^{3/4} \sqrt{\frac{\mathcal{G} g_{\star,H}}{10640 \, \pi}}.$$

Gravitational Waves from PBH

Applications: GW from PBH

Based on PRD 107 (2023) 9, 095002

$$-\mathcal{L} \supset \lambda \, S \, \psi \, u^c + \lambda' \, S^{\star} \, d^c \, d^c + rac{1}{2} \, m_{\psi} \, \overline{\psi^c} \, \psi + \mathrm{h.c.}$$

Fields	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	
u^c	3	1	-4/3	
d^c	3	1	+2/3	
$S_i (i \in 1, 2)$	3	1	+4/3	
ψ	1	1	0	
	${\mathop{\mathrm{Im}}}\ \left(\lambda_{lpha k}^*\lambda_eta\ \lambda_{lpha i j}' ^2+\sum ight)$	$rac{k\lambda_{lpha ij}^{\prime *}\lambda_{eta ij}^{\prime}ig)}{\sum_{i} \lambda_{lpha i} ^2}$	$ imes rac{\left(m_{S_{lpha}}^2 ight.}{\left(m_S^2 ight.}$	$\frac{-m_{S_{\beta}}^2}{-m_{S_{\gamma}}^2}$

$$Y_B = \frac{n_B}{s} = \epsilon_1 \, \frac{n_{S_1}}{s} + \epsilon_2 \, \frac{n_{S_2}}{s}$$

 $m_{S_lpha}\,m_{S_eta}$

 $+ m_{S_{lpha}}^2 \, \Gamma_{S_{eta}}^2$

GW from PBH: Probing Asymmetric Universe

Summary and Conclusion

1. Some high-scale issues: DM, baryon asymmetric Universe, the scale of QG.

2. How to **test/probe** these scales? **Primordial Gravitational Waves**?

3. GW can have cosmological origins: Phase transition, Topological defects, PBHs, etc.

4. The **same sources** might also **produce particles responsible for** all the **cosmological puzzles** discussed above.

4. This suggests that primordial GW can help us understand/test/probe these scales because they might have a common origin.

5. Gravitational wave cosmology is one of the most promising avenues for discovering physics beyond the Standard Model.