

FOEWPT, THCs and GWs in the 2HDM

Sven Heinemeyer, IFT (CSIC, Madrid)

Nanjing/zoom, 05/2024

- 1. Introduction
- 2. FOEWPT and GWs in the 2HDM
- 3. THCs in the 2HDM at the HL-LHC and the ILC
- 4. My first Neural Network analysis
- 5. Conclusions

1. Introduction

1. Introduction

⇒ Why is there more matter than antimatter? ⇒ (EW) baryogenesis ⇒ requires First Order EW Phase Transition (FOEWPT) FOEWPT not possible in the SM ⇒ BSM Higgs sector required FOEWPT can cause Gravitational Waves (GW), detectable with LISA, ...

Phase transition: BSM vs. SM

\Rightarrow BSM Higgs sector required to realized FOEWPT

Bubble formation can lead to Gravitational Waves

[taken from D. Weir]

\Rightarrow Can this happen in the 2HDM? Implications for THCs?

GW observatory: LISA

Approved launch date: \sim 2035

Sven Heinemeyer, Nanjing Normal University seminar (zoom), 22.05.2024

[NASA]

2. FOEWPT and GWs in the 2HDM

Two Higgs Doublet Model (2HDM):

Fields:

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix}, \ \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix}$$

Potential:

$$V = m_{11}^{2} |\Phi_{1}|^{2} + m_{22}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

Physical states: *h*, *H*, (*CP*-even), *A* (*CP*-odd), *H*[±] (charged)

"Physical" input parameters:

 $c_{eta-lpha}$, \taneta , v , M_h , M_H , M_A , M_{H^\pm} , m_{12}^2

Alignment limit: $c_{\beta-\alpha} \rightarrow 0$ (for $M_h \sim 125 \text{ GeV}$)

Many triple Higgs couplings: λ_{hhh} , λ_{hhH} , λ_{hHH} , λ_{hH+H^-} , λ_{HAA} , ...

Assumption: $h \sim h_{125}$

 Z_2 symmetry to avoid FCNC:

$$\Phi_1 \to \Phi_1 \ , \ \Phi_2 \to -\Phi_2$$

Extension of the Z_2 symmetry to fermions determines four types:

	<i>u</i> -type	<i>d</i> -type	leptons	
type I	Φ2	Φ2	Φ2	
type II	Φ2	Φ1	Φ1	ightarrow SUSY type
type III (lepton-specific)	Φ2	Φ2	Φ1	
type IV (flipped)	Φ2	Φ_1	Φ ₂	

Sum rule (with h SM-like): $\sin(\beta - \alpha) \approx 1$, $\cos(\beta - \alpha) \approx 0$

Unitarity/perturbativity and EWPO : $\Rightarrow M_A \sim M_H \sim M_{H^{\pm}}$

 \Rightarrow Parameter scan in the 2HDM type II \Rightarrow ScannerS

tan $\beta = 3$, $c_{\beta-\alpha} = 0$, $m_{12}^2 = m_H^2 s_\beta c_\beta$ 0.2 TeV $\leq m_H \leq 1$ TeV, 0.6 TeV $\leq m_A = m_{H^{\pm}} \leq 1.2$ TeV Constraints:

- Tree-level perturbativity \Rightarrow ScannerS
- Minimum of potential is global minimum ⇒ ScannerS
 ... or sufficiently long-lived ⇒ Evade
- Higgs searches at LEP, Tevatron, LHC \Rightarrow HiggsBounds
- SM-like Higgs properties $\Rightarrow \chi^2_{125} \Rightarrow$ HiggsSignals (2HDECAY, SusHi)
- Flavor physics (mainly $BR(B_s \rightarrow X_s \gamma)$, $\Delta M_{B_s}) \Rightarrow SuperIso$ bounds
- Electroweak precision data $(T \text{ and } S) \Rightarrow \text{ScannerS}$
- λ_{hhh} at one-loop $\Rightarrow \mathsf{BSMPT}$

FOEWPT/GWs in the 2HDM: $\xi_c := v_c/T_c \gtrsim 1$

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

\Rightarrow large ξ_c found in the 2HDM \Rightarrow strong GW signal?

FOEWPT/GWs in the 2HDM: $\xi_n := v_n/T_n \gtrsim 1$

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

\Rightarrow potentially strongest GW signal: forbidden by vacuum trapping

Six thermal histories in the 2HDM:

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

E: viable for FOEWPT, GWs are induced (detectable?) F: no FOEWPT, no GWs are induced

Six thermal histories in the 2HDM:

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

\Rightarrow Zone E preferred by phenomenology/FOEWPT

<u>GWs vs. LISA:</u> $(m_H = 419 \text{ GeV}, m_A = m_{H^{\pm}} = 663 \text{ GeV})$

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

<u>GWs vs. LISA:</u> ($v_W = 0.6$, 7 years of LISA data)

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

 \Rightarrow detectable GWs only in a very small zone close to VT

<u>2HDM parameter scan to yield FOEWPT:</u> $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM,tree}$

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

Smoking gun signature: gap between m_A and m_H : $pp \rightarrow A \rightarrow ZH \rightarrow Zt\bar{t}$

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

\Rightarrow GW zone can be covered at the HL-LHC

Latest experimental results: ATLAS at LHCP23

[ATLAS '23]

 \Rightarrow interesting excess in the "right spot" :-) ($m_H = 450 \text{ GeV}, m_A = 650 \text{ GeV}$)

Smoking gun signature: highest excess for $\tan \beta = 1.5$

[T. Biekötter, S.H., J. No, O. Olea, K. Radchenko, G. Weiglein '23]

\Rightarrow excess in the sweet spot

Smoking gun signature: highest excess for $\tan \beta = 1.5$

[T. Biekötter, S.H., J. No, O. Olea, K. Radchenko, G. Weiglein '23]

\Rightarrow excess in the sweet spot \Rightarrow not confirmed by CMS Run 2 analysis :-(

Smoking gun signature: GW signal at LISA?

[T. Biekötter, S.H., J. No, O. Olea, K. Radchenko, G. Weiglein '23]

\Rightarrow GW signal at LISA possible, but not guaranteed

3. THCs in the 2HDM at the HL-LHC and the ILC

SM triple Higgs coupling: comparison of all colliders:

Di-Higgs production at the LHC:

 \Rightarrow strong interference of "box" and "SM-like Higgs"

Box vs. s-channel Higgs:

Inclusion of one-loop corrections to THCs:

 \Rightarrow always closed subset, dominant for large THCs

Di-Higgs production at ILC/CLIC:

Higgs-strahlung: $e^+e^- \rightarrow Z^* \rightarrow Zhh$

weak boson fusion (WBF): $e + e^{-} \rightarrow \nu \overline{\nu} h h$

Signal and background interference:

Di-Higgs production at ILC/CLIC:

 $e^+e^- \rightarrow Zhh$ $e^+e^- \rightarrow v \overline{v} hh$ 4 ILC 500 GeV, $P(e^-, e^+) = (\mp 0.8, \pm 0.3), {0.19 \atop 0.13}$ fb ---- ILC 1 TeV, $P(e^{-}, e^{+}) = (-0.8, 0.2), 0.13$ fb ILC 1 TeV, P(e⁻,e⁺)=(-0.8,0.2), 0.17 fb ----- CLIC 1.4 TeV, unpolarized, 0.15 fb CLIC 1.4 TeV, unpolarized, 0.09 fb ---- CLIC 3 TeV, unpolarized, 0.59 fb 3 3 CLIC 3 TeV, unpolarized, 0.03 fb σ/σ_{SM} σlσsm 2 2 ILC 500GeV (±16.8% ------ILC 1TeV (±37%) CLIC 1.4TeV (±44%) 0 -1.0 î ca c 0 _2 е Г. е. т -0.50.0 0.5 1.0 1.5 2.0 2 -1 0 1 δκλ δκλ

 $\kappa_{\lambda} := 1 + \delta \kappa_{\lambda}$

 \Rightarrow strong and different dependence on κ_{λ}

Measurement of κ_{λ} selfcoupling at HL-LHC/ILC:

[J. List et al. – PRELIMINARY]

Measurement of κ_{λ} selfcoupling at HL-LHC/ILC:

[J. List et al. – PRELIMINARY]

\Rightarrow over most of the parameter space ILC is clearly superior to HL-LHC

Example: 2HDM \Rightarrow FOEWPT \Rightarrow GW's

[T. Biekötter, S.H., J. No, O. Olea, G. Weiglein '22]

 \Rightarrow Synergies: collider: $\lambda_{hhh} \Leftrightarrow$ LISA: GW signals

 \Rightarrow FOEWPT requires large λ_{hhh} and can induce GW signals

BSM THCs at the HL-LHC

\Rightarrow possible strong resonance with BSM Higgs

Important: experimental limits are obtained for

- non-resonant production
- purely resonant production
- \Rightarrow no limits available for mixed scenarios :-(
- \Rightarrow existing exclusion bounds questionable!

Two types of BSM effects:

 \Rightarrow analyses so far focus on "SM THC": $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{\text{SM,tree}} \equiv 1$ BSM case 1: $\kappa_{\lambda} \neq 1$ BSM case 2: THC that involves BSM Higgses: λ_{hhH} , ...

Example of m_{hh} distortions:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

Benchmark point: 2HDM type I, $m_{A,H^{\pm}} = 545 \text{ GeV}, m_H = 515 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.2, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta}$

 \Rightarrow dip-peak / peak-dip from resonant *H*-exchange \Rightarrow access to λ_{hhH} ?

Benchmark point: 2HDM type I, $m_{A,H^{\pm}} = 545 \text{ GeV}, m_H = 515 \text{ GeV}, t_{\beta} = 10, c_{\beta-\alpha} = 0.2, m_{12}^2 = m_H^2 c_{\alpha}^2 / t_{\beta}$

\Rightarrow smearing of 15% applied (optimistic?) \Rightarrow access to λ_{hhH} ?

\Rightarrow binning of 50 GeV applied (realistic?) \Rightarrow access to λ_{hhH} ?

Experimental analysis vs. reality:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

 \Rightarrow experimental analysis \Rightarrow full calculation

Experimental analysis vs. reality:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

\Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

Experimental analysis vs. reality:

[S.H., M. Mühlleitner, K. Radchenko, G. Weiglein '24]

\Rightarrow excluded by ATLAS resonant searches \Leftrightarrow reality: exclusion?

4. My first neural network analysis

Parameter plane to train the NN:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Each point yields an m_{hh} distribution \Rightarrow fed to the NN

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

- 16 input values (smeared and binned)
- 4 hidden layers with 128 nodes
- output layer to yield $\xi_{H}^{t} imes \lambda_{hhH}$
- training with 3/4 of m_{hh} distribution (randomly chosen)
- "measure" the remaining 1/4 (or ...)

Train with the correct m_{hh} distributions: \Rightarrow perfect result

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

"Realistic result" has statistical uncertainties ($b\bar{b} \ b\bar{b}$ final state):

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

\Rightarrow for each point in the plane test an m_{hh} distribution statistically smeared

"Realistic" determination of $\lambda_{hhH} \times \xi_H^t$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

"Realistic" determination of $\lambda_{hhH} \times \xi_H^t$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

Hypothetical improvement in the efficiencies by $\times 2$:

[M. Frank, S.H., M. Mühlleitner, K. Radchenko, PRELIMINARY]

5. Conclusions

- ⇒ Why is there more matter than antimatter? ⇒ (EW) baryogenesis
 ⇒ requires First Order EW Phase Transition (FOEWPT)
 FOEWPT not possible in the SM ⇒ BSM Higgs sector required
 FOEWPT can cause Gravitational Waves (GW), detectable with LISA
 Q: Can this happen in the 2HDM? Implications for THCs?
- <u>2HDM</u>: \Rightarrow FOEWPT requires $\kappa_{\lambda} \leq 2 \Rightarrow$ GW signal requires $\kappa_{\lambda} \sim 2$ \Rightarrow bad for HL-LHC ($\delta\lambda_{hhh} \sim 70\%$), good for ILC ($\delta\lambda_{hhh} \sim 10\%$) \Rightarrow FOEWPT favors *A*-*H* mass gap \Rightarrow Smoking gun: $A \rightarrow ZH \rightarrow Zt\bar{t}$ $\Rightarrow 2.9 \sigma$ excess ($m_H = 450$ GeV, $m_A = 650$ GeV) \Rightarrow possible GW det. at LISA
- Tripe Higgs couplings are in the focus of current and future colliders \Rightarrow focus on "SM triple Higgs coupling", $\kappa_{\lambda} := \lambda_{hhh} / \lambda_{hhh}^{SM}$ BSM case 1: $\kappa_{\lambda} \neq 1$ (particularly via 1-loop corrections) BSM case 2: THC that involves BSM Higgses: λ_{hhH} , ...
- Searches for resonant di-Higgs production: \Rightarrow exp. analyses leave out interferences \Rightarrow results not reliable
- Acces to $\lambda_{hhH} \times \xi_H^t$ at the HL-LHC:

 \Rightarrow NN analysis shows remarkable sensitivity

Further Questions?